
This is a manuscript of an article that was accepted in January 2018 for publication in the Journal of Hydrology.

The final publication is available at https://doi.org/10.1016/j.jhydrol.2018.01.044

Modeling Urban Coastal Flood Severity from Crowd-Sourced1

Flood Reports Using Poisson Regression and Random Forest2

J. M. Sadler 1, J. L. Goodall 1, M. M. Morsy 1,2, K. Spencer 3
3

1Dept. of Civil and Environmental Engineering, Univ. of Virginia, 351 McCormick Rd., P.O. Box 400742, Charlottesville,4

VA 229045

2Irrigation and Hydraulics Dept., Cairo University, P.O. Box 12211, Giza 12614, Egypt6

3Geographic Information Systems Department, City of Norfolk, 401 Monticello Ave., Norfolk, VA 235107

Corresponding author: Jonathan Goodall, goodall@virginia.edu

–1–



Abstract8

Sea level rise has already caused more frequent and severe coastal flooding and this trend9

will likely continue. Flood prediction is an essential part of a coastal city’s capacity to adapt10

to and mitigate this growing problem. Complex coastal urban hydrological systems how-11

ever, do not always lend themselves easily to physically-based flood prediction approaches.12

This paper presents a method for using a data-driven approach to estimate flood severity in13

an urban coastal setting using crowd-sourced data, a non-traditional but growing data source,14

along with environmental observation data. Two data-driven models, Poisson regression and15

Random Forest regression, are trained to predict the number of flood reports per storm event16

as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, ground-17

water table level, and wind conditions) as input. The method is demonstrated using data from18

Norfolk, Virginia USA from September 2010 - October 2016. Quality-controlled, crowd-19

sourced street flooding reports ranging from 1-159 per storm event for 45 storm events are20

used to train and evaluate the models. Random Forest performed better than Poisson regres-21

sion at predicting the number of flood reports and had a lower false negative rate. From the22

Random Forest model, total cumulative rainfall was by far the most dominant input variable23

in predicting flood severity, followed by low tide and lower low tide. These methods serve24

as a first step toward using data-driven methods for spatially and temporally detailed coastal25

urban flood prediction.26

1 Introduction27

Flooding in low-lying, coastal cities has become more common in recent years due28

to climate change and relative sea level rise [Sweet and Park, 2014]. Relative sea level is29

expected to rise substantially [Vermeer and Rahmstorf , 2009; Church et al., 2001], which30

will worsen the problem of flooding in coastal cities. Flooding in coastal cities is caused by31

large, life-threatening, high-return period events such as Hurricanes Harvey and Irma whose32

flooding recently severely affected coastal cities in Texas and Florida USA, respectively. Ad-33

ditionally, many coastal cities have low-relief terrain and low elevation making stormwater34

drainage problematic. This can make coastal cities susceptible to flooding from smaller, low-35

return period events such as severe thunderstorms. The long-term effects of legacy engineer-36

ing decisions can further add to an urban city’s flood risk (e.g., the use of non-engineered fill37

used to reclaim streams which causes higher than average subsidence rates [Turner, 2004]).38
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The ability to accurately predict flooding allows decision makers to proactively mit-39

igate the effects of flooding [Zevenbergen et al., 2008], which is key to a city’s resilience40

to natural hazards [Godschalk, 2003]. Accurate flood prediction allows decision makers to41

maximize safety in the case of large events, and minimize infrastructure damage and social42

and economic disruption in the case of smaller events. Accurate flood prediction also allows43

cyber-physical (or smart) stormwater systems to perform optimally, further mitigating the44

effects of flooding [Kerkez et al., 2016].45

Modeling and predicting flooding in urban coastal environments can be challenging.46

Urban coastal floods are influenced by a combination of different environmental, geographic,47

and human-related factors [Gallien et al., 2014]. Environmental factors that contribute to48

coastal flooding include rainfall, wind, tide levels, and ground water table levels. Geographic49

factors such as elevation, soil properties, proximity to the coast, and the land use and land50

cover of the drainage area can influence whether a given location experiences flooding. In51

urban settings human-related factors including built stormwater infrastructure and the con-52

dition of that infrastructure, which is often underground, also play a role in the location53

and severity of flooding. For example, clogged stormwater inlets and undersized stormwa-54

ter pipes can increase the chance and severity of flooding. High tidal levels can inundate55

stormwater outfalls rendering them ineffective at draining stormwater to the ocean, a con-56

dition which will become more frequent with sea level rise. The need to accurately represent57

such systems and their changing conditions further adds to the complexity of urban flood58

modeling.59

Urban coastal flood events can be modeled using physically-based 1D [Mark et al.,60

2004] or 2D models [Mignot et al., 2006; Hunter et al., 2008; Bates et al., 2005; Smith et al.,61

2011; Gallien et al., 2014]. However, the simplified representations of reality used in physically-62

based models can be a limitation given the combination of variables and their interactions,63

and the complexity of the physical environment. Two-dimensional, hydrodynamic models64

make fewer simplifications compared to 1D models, however, this comes at a larger compu-65

tational cost [Leandro et al., 2009] which makes executing, and especially calibrating, a 2D66

model difficult [Caviedes-Voullième et al., 2012].67

Another modeling approach shown to be effective in many fields [Yang et al., 2017a]68

including hydrology [Solomatine and Ostfeld, 2008] is data-driven modeling. Data-driven69

models detect patterns in the data to map model inputs to model outputs without attempting70
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to simulate the physical processes [Solomatine and Ostfeld, 2008]. Thus, the relationship71

between the inputs and outputs is not assumed, as in physically-based models, but learned.72

While physical processes are not directly simulated using data-driven models, understanding73

of physical processes usually influences the selection of input variables used to predict the74

output variable [Booker and Woods, 2014].75

The recent increase in availability of earth observation data, coupled with advances in76

machine learning algorithms, have expanded the possibilities and use of data-driven model-77

ing in hydrology. Machine learning algorithms have been used extensively in hydrology for78

applications such as predicting reservoir operations [Yang et al., 2016], soil mineral weather-79

ing [Povak et al., 2014], streamflow [Yang et al., 2017b; Solomatine and Price, 2004;Wang80

et al., 2009], groundwater potential [Naghibi et al., 2017], and groundwater level [Sahoo81

et al., 2017]. Data-driven and machine learning algorithms in flooding applications specifi-82

cally have been used by Tehrany et al. [2013], Wang et al. [2015], and Tien Bui et al. [2016]83

who predicted areas susceptible to flooding, Adamovic et al. [2016], who modeled flash84

flooding on a regional scale, and Solomatine and Price [2004], who predicted streamflow85

for flood forecasting. Despite the expanded use of data-driven models in hydrology, few stud-86

ies have used data-driven methods to model flooding within coastal urban environments. The87

closest work may be the statistical analysis of tidal records in the United States to estimate88

the amount of time that coastal cities have experienced flooding in the past several decades89

and project flooding in the coming decades [Ezer and Atkinson, 2014; Sweet and Park, 2014;90

Moftakhari et al., 2015; Ray and Foster, 2016].91

The objective of this study is to use data-driven modeling to predict flooding sever-92

ity for a given storm in an urban coastal setting. Crowd-sourced flood reports recorded dur-93

ing flood events are used for model training and are considered a proxy variable for flood94

severity. Although a more objective measure of flood severity is preferred to the number of95

flood reports (e.g., flood inundation depth and duration throughout the study domain), often96

such data is not available. Relevant environmental data (rainfall, tide levels, water table level,97

wind speed and direction) will be used as inputs to the model.98

A data-driven approach is appropriate for this application due to the complexity of99

modeling urban coastal flooding, as discussed above, which makes using a physical model100

difficult. This paper will investigate and compare two different data-driven models, Pois-101

son regression and Random Forest regression. Poisson regression is a generalized linear102
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model and was selected because it is commonly used to model rare events [D’Unger et al.,103

1998] and a flood report, while increasing in occurrence, can still be considered a rare event.104

Random Forest was selected due to its wide use as a machine learning algorithm in hydrol-105

ogy applications [Yang et al., 2016;Wang et al., 2015; Loos and Elsenbeer, 2011] and other106

fields [e.g.,Mutanga et al., 2012; Svetnik et al., 2003].107

The data-driven approach will be applied in Norfolk, Virginia USA. Norfolk and the108

surrounding Hampton Roads region is one of the most vulnerable metropolitan centers to109

coastal flooding in the USA [Fears, 2012]. Since 2010, the City has collected quality-controlled,110

crowd-sourced street flooding reports for 45 storm events. In this study, the two data-driven111

models, Poisson regression and Random Forest regression, will be trained to predict the112

number of street flood reports per storm event, given the rainfall, tidal, water table, and wind113

characteristics of the storm event. The models will be evaluated and compared using pri-114

marily the root mean squared error (RMSE) and mean absolute error (MAE) between the115

predicted number of street flood reports and the actual number of street flood reports.116

This is a first step toward the use of data-driven approaches in urban coastal flood mod-117

eling. Additionally, although Gaitan et al. [2016] employed exploratory methods to glean118

information from open spatial data, weather data, and user reports, the use of crowd-sourced119

data in the training and evaluation of data-driven predictive models for urban flood mod-120

eling has not been demonstrated or discussed thoroughly in the literature. This is relevant121

currently as multiple platforms now exist for collecting crowd-sourced information regarding122

urban flooding [Le Coz et al., 2016] and it can be expected that, due to the nearly universal123

use of internet connected devices, crowd-sourced data will continue to grow in volume. It124

is also anticipated that the results of the model will shed light on the relative importance of125

different environmental factors in predicting coastal flooding, another subject that has been126

given little attention in previous literature regarding urban coastal flooding.127

The remainder of this paper will proceed as follows. First, background will be given128

describing the study area, the model input and output data, and an introduction to the data-129

driven models used. Next, the methods are presented describing the preparation of the data130

for the models and how the data-driven models were applied and evaluated. The model re-131

sults are then presented and discussed, and finally conclusions are given.132
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2 Study Area, Data, and Model Background133

2.1 Study Area and Street Flooding Record134

Norfolk, Virginia USA, shown in Figure 1, is an ideal study area for this research con-135

sidering its vulnerability to flooding, its economic and military importance, and the availabil-136

ity of quality-controlled crowd-sourced data regarding flood occurrences for the city. Norfolk137

is one of the most vulnerable cities to coastal flooding in the USA due largely to land subsi-138

dence rates causing Norfolk and the surrounding area to experience relative sea level rise at139

a rate faster than the global average [Kleinosky et al., 2006]. As home to the largest terminal140

of the Port of Virginia, the 3rd most used port on the East Coast of the US [The Port of Vir-141

ginia, 2016], Norfolk plays an important role in the economy of Virginia and the surrounding142

states. The world’s largest naval base, Naval Station Norfolk, is also within Norfolk, making143

the flooding risks in the area important to US national security [Broder, 2009].144

An important factor in selecting the study area was the availability of crowd-sourced145

flood record data. A record of reported flooded street locations has been kept in Norfolk146

starting with Hurricane Nicole on 30 September 2010, shown in Figure 1. This is a unique147

dataset because often, observational data from flooding events is a limiting factor in creating148

useful flood models [Smith et al., 2011]. Because such data is often sparse, photographs of149

flooded locations and personal interviews have been used out of necessity in the calibration150

and verification of flood models [Smith et al., 2011]. Even satellite imagery has been used to151

estimate flooding extents [Ireland et al., 2015], but is less useful as a street-scale flood record152

in an urban setting due to its coarse spatial resolution.153

2.2 Description of Model Input and Output Data155

The objective of this study is to develop a model capable of predicting flooding sever-156

ity resulting from a given storm event based on the environmental conditions of that event.157

The environmental condition input data for the model consisted of rainfall, water table level,158

wind, and tide level observations. These were obtained from the Hampton Roads Sanitation159

District (HRSD) and the US National Oceanic and Atmospheric Administration (NOAA).160

From HRSD, rainfall, water table elevation, and wind direction and wind speed data were161

obtained. The rainfall observations were on a 15-minute time scale, and the water table el-162

evations and wind data were on a 2-minute time scale. From NOAA, 6-minute water eleva-163

tions and daily high and low tides recorded at the Sewells Point [NOAA, 2017a] and Money164
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Figure 1. Study area: Norfolk, Virginia USA154

Point [NOAA, 2017b] tide gauges were obtained. Wind speed, wind gust, and wind direction165

data recorded at the Money Point station at 6-minute time intervals were used as well. Daily166

rainfall and wind data collected at two airports in the study area, Norfolk International Air-167

port [NOAA, 2017c] and Norfolk Naval Air Station [NOAA, 2017d], were also obtained from168

NOAA. The rain gauge, water table, wind, and tide gauge stations and airports are shown169

in Figure 1. All of the raw data together consisted of more than 15 million observations. To170

keep the time series data organized, a simplified version of the Consortium of Universities171

for the Advancement of Hydrologic Sciences Incorporated (CUAHSI) Observations Data172

Model [Horsburgh et al., 2009] was implemented in a sqlite database.173

The target data used for the model training and evaluation were the number of crowd-174

sourced flooded location reports per storm event from September 2010 to October 2016.175

The flood reports were made and catalogued using the City’s custom System to Track, Or-176

ganize, Record, and Map (STORM). STORM is used by the City to record, and catalogue177
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impacts from storms on the City’s infrastructure (e.g., downed powerlines, damaged trees)178

and STORM data are viewable online at http://gisapp1.norfolk.gov/stormmap. For most of179

the study period, only City of Norfolk staff were able to make reports in STORM however,180

in the Spring of 2016 the mobile application used for reporting was made available to the181

public. Reports made by the general public underwent an approval process by City staff.182

The two categories of STORM reports used for model training in this study were “flooded183

street” and “flooded underpass”. A total of 45 storm events (listed in Table 1) were reported184

to have caused at least one flooded street or flooded underpass in the period of record. The185

number of reported floods per event ranged from 1 to 159. Figure 2 shows a box plot of the186

street flood reports per event. Eight of the events were hurricanes; the rest were unnamed or187

given generic names by city workers. The number of flood reports made from the top six188

storm events were much larger than the number of reports made from the other 39 storm189

events. These larger events are marked as points and labeled in Figure 2.190

Figure 2. Summary plot of reported floods per event in Norfolk, VA Sep. 2010 - Oct. 2016191

2.3 Model Alternatives193

2.3.1 Poisson Regression194

Poisson regression is a generalized linear model (GLM) commonly used to model rare195

event, count data. Applications of Poisson regression include modeling crime rate [Osgood,196
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Table 1. Events recorded to have caused flooding in Norfolk Sep. 2010 - Oct. 2016192

Event Date Event Name Flood Reports

29 Sep 2015 Hurricane Joaquin 159
05 Oct 2016 Hurricane Matthew 111
27 Aug 2011 Hurricane Irene 110
28 Oct 2012 Hurricane Sandy 105
20 Sep 2016 unnamed 101
30 Sep 2010 Hurricane Nicole 101
02 Sep 2016 Hurricane Hermine 40
10 Jul 2014 Thunderstorms 39
09 Oct 2013 Heavy Rain 36
16 May 2014 Heavy Rain 35
08 Sep 2014 Rainy Monday 31
20 Jan 2016 January Winter Weather 26
24 Jul 2014 unnamed 18
24 Sep 2015 Noreaster 16
19 Sep 2016 Heavy Rain 11
02 Mar 2015 unnamed 10
11 Jul 2015 Thunderstorm 10
19 Jul 2016 Thunderstorm 9
25 Feb 2016 unnamed 8
03 Jul 2014 Hurricane Arthur 8
31 Jul 2016 Thunderstorm 8
02 Jul 2015 unnamed 7
15 Jan 2016 unnamed 6
03 Jun 2016 Severe Weather - 6/5 6
04 Sep 2014 Thunderstorm 5
19 Jun 2014 Thunderstorms 5
01 Feb 2016 unnamed 5
23 Nov 2014 unnamed 4
13 Sep 2014 Saturday Storm 3
30 Dec 2015 Heavy Rainfall 3
09 Jul 2014 Thunderstorms 2
25 Jul 2016 Bernie (Training) 2
10 Jun 2016 unnamed 2
29 Sep 2014 unnamed 2
16 Dec 2010 Snow 2
24 Feb 2016 February 24th Storm 1
17 Nov 2014 Storm 1
30 Oct 2015 unnamed 1
20 Jul 2016 unnamed 1
17 Sep 2015 unnamed 1
02 Sep 2015 unnamed 1
18 Aug 2014 unnamed 1
24 Sep 2014 Heavy Rain 1
09 Jun 2014 unnamed 1
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2000], disease incidence [Frome and Checkoway, 1985], and manufacturing defects [Lam-197

bert, 1992]. Morrison and Smith [2002] and Viglione et al. [2014] used Poisson distributions198

to model the arrival time and occurrence of flood peaks, respectively.199

There are two main assumptions made when using Poisson regression. The first is that200

the response variable (number of flood reports in this case) follows a Poisson distribution201

P = e−λ
λk

k!
(1)

where P is the probability that k number of events will occur per interval of time and λ is the202

event rate. The second major assumption when using Poisson regression is that the variance203

and the mean of the response variable are equal. Thus, the probability distribution (eq. 1)204

can be specified by only one parameter, λ [Coxe et al., 2009].205

In Poisson regression, the mean parameter, λ, is defined by the log-linear function206

λ = e−xiβ (2)

where xi is a vector of input values for time i and β is a corresponding vector of model pa-207

rameters, which is optimized during training [Cameron and Trivedi, 1998].208

2.3.2 Random Forest209

Random forest, developed by Breiman [2001], is an ensemble machine learning al-210

gorithm which uses a large number of classification or regression trees (CART) to make a211

prediction [Breiman et al., 1984]. The response variable in this case, the number of flood212

reports per event, is modeled using regression, therefore the Random Forest model is an en-213

semble of regression trees. In the training of a regression tree, rules based on the response214

variable are developed to divide observations until the resulting predictions have a minimum215

amount of node impurity. Node impurity for regression trees, as defined by Breiman et al.216

[1984], is the sum of the squared deviations between the predicted and actual value [Loh,217

2011]. The regression tree’s rules are a collection of linear divisions of the observation data218

that, together, create a non-linear decision surface.219

One of the main problems of regression trees is that they are prone to overfitting to the220

training data and thus perform poorly when given unseen data [Murphy, 2012]. Random For-221

est is an approach that attempts to address this weakness. When an individual regression tree222

is trained in the Random Forest algorithm, a portion of the input records and predictor vari-223
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ables are randomly selected as input to the training. This process is repeated for the number224

of regression trees specified by the modeler, thus creating a group of regression trees, each225

trained on a randomly selected subset of the records and input variables. This group of re-226

gression trees constitutes a Random Forest model. The prediction made by a Random Forest227

regression model is the average of the predictions made by each individual regression tree.228

The random selection of input records and variables in the training of the individual regres-229

sion trees creates variety in the weak learners, thus avoiding overfitting of the model to the230

training data.231

Beyond the actual predictive capabilities of Random Forest, the algorithm can be used232

to understand variable importance. Because many regression trees are being produced with233

different sets of input variables, the Random Forest algorithm learns and records the rela-234

tive importance of the input variables in predicting the output. This capability is especially235

attractive as one of the objectives of this study is to understand the relative importance of236

explanatory variables in predicting street flooding, thus directing future investments in im-237

proving observational networks within the city.238

3 Methods239

3.1 Input Data Pre-processing240

All of the raw input environmental data were aggregated to match the time scale of the241

flood reports. For all of the days on which no flood reports were made, and for storm events242

resulting in flood reports made only on one day, the data were aggregated to a daily time243

scale. For the storm events whose flood reports spanned multiple days, the data were ag-244

gregated across the days so that each storm event had only one set of average environmental245

conditions. For example, flood reports labeled “Hurricane Sandy” were recorded over three246

days, 2012-10-27, 2012-10-28, and 2012-10-29. The higher high tide taken for this event247

was the highest of the higher high tides of these three days, the average level of the surficial248

groundwater table was the average over these three days, and the total cumulative rainfall249

was the accumulated rainfall from the three days. The resulting dataset consisted of 2,171250

records of average environmental conditions, mostly at a daily time scale, from September251

2010 through October 2016. The aggregated environmental input variables are shown in Ta-252

ble 2.253
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Different approaches of aggregation were taken for the various environmental data.254

Four derivatives of the raw HRSD 15-minute rainfall data were included in the models as in-255

puts: total cumulative rainfall, maximum hourly rainfall, maximum 15-minute rainfall, and256

cumulative rainfall in the previous three days. The different derivatives of the rainfall data257

were included to account for different types of storm events that may cause flooding. For ex-258

ample, during convective thunderstorms in the summertime, the maximum 15-minute rainfall259

would be high, but the total cumulative rainfall may be low. For nor’easters, the cumulative260

rainfall would be high while the maximum 15-minute rainfall may be low.261

As with the 15-minute rainfall data, several tide-related variables were model inputs in-262

cluding high and low tides, and average tide level. In coastal cities, such as Norfolk, the tim-263

ing of rainfall and the tide levels can have an effect on flooding. For example, if tide level is264

especially high when a large amount of rain falls, the stormwater oulets may be submerged.265

Such tailwater conditions do not provide sufficient head difference for gravity-driven storm266

drainage systems to function properly resulting in more flooding than if the tide were low and267

the same amount of rain fell. To account for such interactions between tide and rainfall, the268

tide level at the time of the maximum 15-minute rainfall and the tide level at the time of the269

maximum hourly rainfall were included as model inputs.270

The environmental conditions data were averaged across all the stations that recorded271

the variable. For example, the “Daily cumulative rainfall” is the total cumulative rainfall av-272

eraged across all 11 rain gauges. This spatial averaging was done because for some of the273

stations there was a considerable amount of missing data over the six years of the study pe-274

riod. If the variables were not averaged across measuring stations, it would appear that the275

stations that had less missing data were more important which would make it more difficult276

to understand the importance of the actual environmental variables compared to the consis-277

tency of measurements at an individual station.278

To reduce noise in the data, days on which little or no rainfall was recorded were not280

used in the modeling procedure. Of the 45 events for which flooding was reported, 42 had281

an average cumulative rainfall total of 0.25 mm or greater. Of the three events with less than282

0.25 mm of rainfall, only one flooded location was reported for two of the events and only283

two flooded locations were reported for the third event. Given that very minor flooding was284

reported for days without rainfall, days with little to no rainfall (<0.25 mm of cumulative285
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Table 2. Input feature names and descriptions279

Input Feature Units Source Organization Abbreviation

Total cumulative rainfall mm airports, HRSD RT
Maximum hourly rainfall mm HRSD RHRMX
Maximum 15-minute rainfall mm HRSD R15MX
Cumulative rainfall in previous three days mm HRSD R3D
Average water table elevation m above NAVD88 HRSD GW_AV
Average tide level m above MSL NOAA TD_AV
Tide level at time of maximum 15-minute rainfall m above MSL NOAA TD_R15
Tide level at time of maximum hourly rainfall m above MSL NOAA TD_RHR
High tide m above MSL NOAA HT
Higher high tide m above MSL NOAA HHT
Low tide m above MSL NOAA LT
Lower low tide m above MSL NOAA LLT
Average daily wind speed km per hour airports, HRSD, NOAA AWND
Average daily wind direction degrees airports, HRSD, NOAA AWDR
Average wind speed over 6-minutes km per hour airports, HRSD, NOAA WSF6
Average wind direction over 6-minutes degrees airports, HRSD, NOAA WDF6
Average maximum 2-minute wind gust over 6-minutes km per hour airports, HRSD, NOAA WGF6
Average wind speed over 2-minutes km per hour airports, HRSD, NOAA WSF2
Average wind direction over 2-minutes degrees airports, HRSD, NOAA WDF2

rainfall) were considered in the model training and evaluation. This reduced the number of286

total records used to train and evaluate the model from 2,171 to 814.287

3.2 Model Training and Evaluation288

Model training and evaluation were performed using two independent, randomly se-289

lected partitions of the output and corresponding input data. In some studies, the dataset is290

split into three partitions, a training, evaluation, and validation set [Tao et al., 2017], how-291

ever, since a two-way split is common in this field [Tien Bui et al., 2016; Tehrany et al.,292

2013; Solomatine and Price, 2004] and the available dataset is of limited volume, the dataset293

was split into only two partitions. In the model training, the evaluation dataset was withheld294

and the models were fit to only the training data. By withholding the evaluation dataset in295

model training, the models can be evaluated using data not previously seen by the models,296

thus simulating actual use of the predictive models.297

The R programming language (version 3.3.3) was used to partition the datasets, train298

the two models, and apply the models to the unseen, evaluation dataset [R Core Team, 2017].299

The dataset of environmental conditions (the model input data) for storm events from Septem-300

ber 2010 to October 2016 and the number of reported flood locations for each event (the301

model output data) were randomly divided into a training set (70%) and an evaluation set302
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(30%) [Tien Bui et al., 2016; Tehrany et al., 2013; Solomatine and Price, 2004] using the303

“caret” package in R [Kuhn et al., 2016]. This package supports the stratified sampling of304

the datasets based on the distribution of the model output data, which included the 42 storm305

events for which flooding was reported and the 772 events for which no flooding was re-306

ported. By using stratified sampling, the distribution of the number of reported floods (the307

output variable) in both the training and evaluation datasets was similar to the distribution308

of the number of reported floods of the entire data set. To account for potential bias in the309

division of the data into training and evaluation sets, the random division was made and the310

models were trained 100 times independently for both models.311

Since Poisson regression is a parametric model, the training of the Poisson regres-312

sion model consisted of optimizing the model coefficients. The built-in “stats” package in313

R was used for the Poisson regression model. The training of the Random Forest consisted of314

training each of the individual regression trees making up the Random Forest. The ’random-315

Forest’ package (version 4.6.12) was used for the Random Forest model [Liaw and Wiener,316

2002].317

The Random Forest model has two main parameters, the number of trees per forest,318

and the number of random predictor variables each tree uses. A sensitivity study of these pa-319

rameters was performed to determine their effect on model performance. To determine the320

model sensitivity to the number of trees per forest, the models were trained with the num-321

ber of trees varying between 2 and 2,000 with the default number of variables per tree (i.e.,322

one-third of the variables, or six in this case). The “tuneRF” function in the “randomForest”323

package was used to determine the optimum number of variables per regression tree in the324

Random Forest. This function changes the number of variables used in each regression tree325

to find the number of variables that minimizes the out-of-bag error within the Random For-326

est. The out-of-bag error is the prediction error when each input record is applied only to the327

portion of the regression trees which did not contain that input record in its training sample328

[Breiman, 2001]. Only the training data was used to determine the appropriate number of329

trees and variables per tree [Xu et al., 2017].330

Once trained, both the input training dataset and the input evaluation dataset, which331

was withheld in the model training, were used as input for the models. Applying the mod-332

els to the input data produced a predicted number of reported floods for each array of input333

values. The predicted numbers of reported floods were compared with the known number of334
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reported floods. Root mean squared error (RMSE) and mean absolute error (MAE) between335

the known and predicted number of flood reports were the two main metrics used to evalu-336

ate the models. Since each model was trained 100 times (once for each of the 100 random337

divisions into training and evaluation data), a distribution of predicted number of flood re-338

ports was produced in the model evaluation for each known number of reported floods. To339

describe these distributions, their standard deviations (std) were plotted and the average stan-340

dard deviation of each model was reported.341

In addition to RMSE, MAE, and std, the models’ false negative and false positive pre-342

dictions were also used to evaluate the models. False negative predictions occur when the343

predicted number flood reports is zero and the true number of flood reports is non-zero.344

False positive predictions occur when the true number of flood reports is zero and the pre-345

dicted number of flood reports is non-zero. These terms are sometime referred to as Type I346

and Type II errors, respectively [Beguería, 2006]347

False negative and false positive predictions are of particular interest to a decision348

maker. False negative predictions may jeopardize human safety and incur higher costs in349

recovery when a true positive prediction would have led to less costly, preventative measures.350

False positive predictions over time can erode trust in the warnings [Basha et al., 2008]. For351

the Random Forest and Poisson regression models, the statistical characteristics (e.g., count,352

mean, standard deviation) of the false negative and false positive predictions were reported353

and compared. Since predictions were on a continuous scale and true flood reports were in-354

tegers, the predictions were rounded to the nearest integer when calculating the false negative355

and false positive rates. For example, a prediction was considered false positive when the356

number of flood predictions was at least 0.5 (which would round to 1) and the true number of357

flood reports was zero.358

4 Results and Discussion359

4.1 Model Results360

The results of the Poisson regression training and evaluation are shown in Table 3 and361

Figure 3. Predictions from the Poisson regression greater than 159 flood reports (the largest362

number of flood locations reported from any one event) were assumed to be outside a reason-363

able range and were therefore omitted. These predictions accounted for 0.3% of all predic-364

tions and 5.9% of the predictions greater than 0.5 flood report made in the evaluation phase.365
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Table 3. Summary of training and evaluation results for Poisson regression and Random Forest. All units

are in number of flood reports.

388

389

RMSE MAE std
Training Evaluation Training Evaluation Training Evaluation

All days Poisson 2.31 6.71 0.46 0.96 4.99 18.42
RF 1.86 3.87 0.30 0.69 3.06 6.00

Non-zero flood days Poisson 10.06 29.81 6.56 16.34 5.18 19.11
RF 8.04 16.55 4.41 9.83 3.17 6.21

On the other hand, since the Random Forest model predictions are the average of each re-366

gression tree’s prediction, the Random Forest predictions cannot exceed the range of training367

values. Therefore, none of the Random Forest predictions were omitted.368

Figure 3 shows the predictions made by the Poisson regression model in the training369

and evaluation phases. The predictions made using the training data as input generally follow370

the one-to-one line, while the predictions made using the unseen, evaluation data as input371

are much more scattered. Additionally, for many of the values of true floods, the predicted372

number of floods in the evaluation phase had large standard deviations (mean of 18.42 flood373

reports) compared to the training phase (mean of 4.99 flood reports). For some values of true374

flood reports in the evaluation phase, the range of predictions was large even when the mean375

of the predictions was close to the true value. For example, the mean of the predictions when376

there were 31 true flood reports was 29, however, the predictions ranged from 4 to 91.377

One explanation for the limited performance of the Poisson regression may be due to378

the target data not conforming to the assumptions used in the development of the Poisson379

regression model. One of the primary assumptions when using Poisson regression is that the380

variance and the mean of the output dataset are equal. In the flood reports dataset described381

in Section 2.2 and Figure 2, the mean was 1.2 flood reports, much lower than the variance,382

108 flood reports, meaning that the data were overdispersed. A common method for handling383

overdispersed data in such cases is to use a modified version of Poisson regression called384

overdispersed Poisson. With overdispersed Poisson the assumption that the mean is equal to385

the variance is relaxed [Gardner et al., 1995]. The overdispersed Poisson was tested as well386

but the results were very similar to the Poisson regression results.387

From the sensitivity analysis of the Random Forest parameters, the number of trees per390

forest was 100. As seen in Figure 4 Random Forests with more than 100 regression trees saw391
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minimal improvements in terms of RMSE, MAE, and std. The model was more sensitive392

to the number of variables per tree had a more significant impact. The number of variables393

per regression tree that performed the best in the optimization procedure was 16. Changing394

the number of variables per tree from six (the default) to 16 decreased the models RMSE by395

23%.396

The RMSE, MAE, and std of training and evaluation predictions from the Random397

Forest model are reported in Table 3. The RMSE was significantly higher in the evaluation398

phase compared to the training phase both when considering all of the events and when con-399

sidering only events where floods were recorded. In both cases, the evaluation RMSE was400

about two times the training RMSE, suggesting that, like the Poisson regression, the model401

was overfit to the training data. Figure 5 shows the predicted number of flood reports made402

by the Random Forest model in the training and evaluation phases.403

One reason for the overfitting seen in the models may be related to the imbalance of404

dataset. As would be expected, there are far more storm events where no flooding is re-405

ported, making the dataset imbalanced. The ratio of storm events for which some rain fell406

and zero flood reports were made to storm events on which some rain fell and at least one407

flood report was made is approximately 18:1. Another factor may be the relatively small na-408

ture of the dataset (less than 1,000 total records). He and Garcia [2009] noted that models409

trained with datasets that are both imbalanced and small are particularly prone to overfitting410

to the training data. As more data is collected and available for use in model training, it is411

expected that model overfitting would decrease.412

Comparing the Poisson regression and Random Forest model, Random Forest per-416

formed better overall. In terms of RMSE and MAE, both models were nearly equal in the417

training phase, however, Random Forest performed significantly better in the evaluation418

phase. While both models showed signs of being overfit to the training data (i.e. a large drop419

in performance during the evaluation phase), the proportional difference in performance be-420

tween training and evaluation in the Random Forest predictions was roughly two-thirds of421

that of the Poisson regression. A more significant difference in performance between Poisson422

regression and Random Forest was seen in the stability of the predictions in the evaluation423

phase as measured by the standard deviations of the predictions. Quantitatively, in the eval-424

uation phase, the standard deviations of the Poisson predictions was more than three times425

that of the standard deviation of the Random Forest predictions. Visually, the difference is426
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apparent when comparing the standard deviation bars in the evaluation predictions in Figures427

3 and 5.

Figure 3. Model results for Poisson regression. Error lines represent the standard deviation of predictions.413

428

It is important to note that model performance was measured using observed environ-429

mental conditions as model input. In practice, forecasted environmental conditions would be430

used as model input to predict flood severity. For example, rather than using rainfall and tide431

data observed at monitoring stations as input, rainfall forecasts from the High-Resolution432

Rapid Refresh (HRRR) model [Smith et al., 2008] and NOAA’s tide predictions [NOAA,433

2017e] could be used as inputs. The use of uncertain forecast rainfall data are expected to434

increase the overall uncertainty of the model [Collier, 2007; Bartholmes and Todini, 2005].435

4.2 False Negative and False Positive Predictions436

Statistics summarizing false negative and false positive predictions in the evaluation437

phase are given in Table 4. Poisson regression had fewer but more variable and extreme false438
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Figure 4. Random Forest model results with varying numbers of trees per model.414

positive predictions compared to Random Forest. The false positive rate for Poisson regres-439

sion was 4.39% compared to 7.09% for Random Forest, however, the standard deviation of440

the false positive predictions was much larger from the Poisson regression (8.55 flood reports441

compared to 3.18 flood reports). For both models, most of the false positive predictions were442

less than 1.17 flood reports, which would round down to one. The maximum false positive443

prediction was much greater in the Poisson regression compared to the Random Forest (122444

compared to 36).445

Compared to the false positive rates, both Poisson regression and Random Forest had446

much higher false negative rates (45.92% and 34.46% respectively). Importantly, compared447

to Random Forest, Poisson regression predicted false negatives when true flood reports were448

higher on average (mean of 6 flood reports compared to 3 flood reports). As with the false449

positives, the standard deviation of the false negatives predictions was higher for Poisson450

regression versus Random Forest, 11.55 flood reports compared to 2.30 flood reports. Simi-451

larly, the maximum true number of flood reports when a false negative prediction was made452

was much higher from Poisson regression (101 flood reports compared to 9 flood reports).453
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Figure 5. Model results for Random Forest. Error lines represent the standard deviation of predictions.415

4.2.1 Variable Importance458

Figure 6 shows the importance of each of the input variables as calculated from the459

Random Forest model in terms of the percent increase in mean squared error (MSE) when460

each of the variables is permuted individually. The total cumulative rainfall value was by far461

the most important of the variables. This was much more important than any of the other462

variables derived from the raw rainfall data, including the maximum hourly and maximum463

15-minute rainfall values, suggesting that, in this record, large rainfall volumes caused more464

flooding than high rainfall intensities. The next three variables in terms of prediction impor-465

tance were related to tide: low tide, lower low tide, and higher high tide.466

The variable importance results shown in Figure 6 are supported by the raw data shown467

in Figure 7. The number of flood reports has clear positive relationship with the total cu-468

mulative rainfall. The same is true for low tide and lower low tide. The relationship is less469

clear for the maximum hourly rainfall and the maximum 15-minute rainfall, but according470
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Table 4. False positive and false negative statistics for Poisson regression and Random Forest. The statistics

in the false positive columns describe the predicted flood reports greater than 0.5 when the true number of

flood reports was zero. The statistics in the false negative columns describe the true non-zero flood reports

when the predicted flood reports were zero.

454

455

456

457

False Positives False Negatives
Poisson RF Poisson RF

rate (%) 4.39 7.09 45.92 34.46
count 1023.00 1653.00 524.00 428.00
25% 0.69 0.70 1.00 1.00
50% 1.10 1.17 2.00 2.00
75% 2.40 2.81 5.00 3.00
max 122.48 36.37 101.00 9.00
mean 3.41 2.47 5.77 2.64
std 8.55 3.18 11.55 2.30

to Figure 6, the Random Forest model was still able to glean some meaningful information471

from these variables. Interestingly, the tide level during the maximum 15-minute rainfall,472

has a clearer visual relationship with the number of flood reports compared to the maximum473

hourly, and maximum 15-minute rainfall values, but is considered less important by the Ran-474

dom Forest algorithm. One explanation for this is that the information provided by the tide475

level during the maximum 15-minute rainfall is already provided to the model, perhaps in a476

more useful form, from the low tide, lower low tide, and higher high tide variables.477

The average height of the water table during a given event, surprisingly, did not add478

appreciable predictive power to the model. This may suggest that the surficial groundwater479

table did not impact flood severity in a significant way. However, the fact that it did not pro-480

vide predictive power does not necessarily mean that the surficial groundwater table level did481

not contribute to flooding. For example, since the infiltration of rainfall causes the surficial482

groundwater table to rise, it is possible that the information provided by the rainfall data pro-483

vides similar but clearer predictive power to the model compared to the surficial groundwater484

table level.485

Although total cumulative rainfall is clearly the dominant predictor of flood severity486

in this dataset, it is commonly understood that other factors can have a significant impact487

on flooding in a coastal environment. For example, high tides alone can cause flooding in488

coastal cites [Marfai et al., 2008]. When tidal information is omitted from the model inputs489
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in this study, the RMSE of the Random Forest predictions increases by 4% and by 14% for490

the Poisson regression predictions. Thus, while rainfall is clearly the most important vari-491

able, tide levels and potentially other environmental variables cannot be ignored. It is antic-492

ipated that as sea levels rise, the importance of tide levels and water table level in predicting493

flooding will grow [Hoover et al., 2016].494

Figure 6. Importance of input variables495

4.3 Potential Explanations for Model Limitations497

A likely reason for the limited performance in both models is the limited amount of498

reported street floods used to train the models. The crowd-sourced flood report dataset used499

in this study is a unique and valuable dataset, but still a complete picture of flooding impacts500

is missing. Flood reports were made on only 42, or just over 5%, of the records used in the501

modeling. In addition, the number of flooding reports were distributed very unequally among502

the 42 storm events on which flood reports were made. More than 65% of the total flood re-503

ports were recorded from just six storm events (0.6% of the total storm events modeled). The504

rarity of storm events with any flood reports, and especially a large number of flood reports,505

makes it difficult for the model training. Solomatine and Price [2004] faced similar prob-506
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Figure 7. Flood reports against top nine predictor variables. Units for each variable are shown in Table 2496

lems in training their machine learning model to accurately predict high peak flows which507

occurred rarely in their dataset.508

The results also suggest that, compared to storm events with large volumes of rainfall509

which caused flooding, other types of storm events were not as well modeled by the data-510

driven models. Figure 9 shows the percent error of the Random Forest evaluation predic-511

tions for the 11 events with the top 10 number of reported floods (two events had 101 flood512

reports: Hurricane Nicole and an unnamed event occurring on 20 September 2016). Two513

unnamed events, heavy rain which occurred on 16 May 2014 (35 reported flood locations)514

and thunderstorms which occurred on 10 July 2014 (39 reported flood locations) have av-515

erage percent error magnitudes larger than the rest. Both of these events had much lower516

cumulative rainfall and tide levels, the most important variables in the model (see Figure 7),517

but higher maximum hourly rainfall and relatively high maximum 15-minute rainfall values518
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compared to the other high flooding events. Given this, it is possible that these events caused519

flash floods. The worse performance of the models at predicting the flooding severity from520

these two events may suggest that this type of flooding is not well represented in the train-521

ing dataset. It is expected that the data-driven models would better predict such flood events522

with a larger, more complete dataset, containing more instances of similar flooding events.523

Additionally, with more training data, the model could be trained on specific subsets of flood524

events tailoring it to a type of flood event with specific characteristics (e.g., flash floods).525

Figure 8. Top 10 flooding event percent error from Random Forest evaluation results526

Besides the limited number of flooding events with which to train the models, bias527

present in the training data could have hampered model performance. Because the flooded528

locations were reported by individuals, there is an unknown amount of subjectivity and bias529

in the data as can be expected when using crowd-sourced data. Since the models are trained530

on data reported by individuals, one individual may influence the trained model dispropor-531

tionally. Figure 10 shows the total number of flood reports made by each individual reporter,532

and the number of flood events for which each reporter recorded at least one flooded location533

during the period of record. The highest number of total reports made by one reporter was534

158, 14% of the sum total reports from all 71 reporters. Therefore, the models in their train-535

ing, are significantly influenced by this one reporter and can inherit, to some extent, his/her536

biases.537
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Another potential bias is in the under- or over-representation of different roadway types538

in the flooding record. Figure 11 shows the percentage of roadway length per VDOT road-539

way class in Norfolk and the percent of each roadway class at which flood reports were made540

(Table 5 gives the descriptions for each of the classes). From the figure, it is seen that al-541

though public local streets (class 6) account for the majority of the roadway length of the542

city (close to 60%), only 40% of the flooded streets reported were public local streets. Con-543

versely, principal arterials (class 3) accounted for nearly 30% of the flooded street reports544

even though these streets make up less than 10% of Norfolk’s total roadway length. This sug-545

gests that a flooded street less traveled and, therefore, less important to the overall connectiv-546

ity of the city’s street network, may have flooded but may not have been reported within the547

record with the same frequency as the more major roads.548

A third example of bias may occur when unequal attention in reporting is given to549

certain geographic areas of the city or to certain storm events. One example of this bias is550

seen in the difference in reported floods between Hurricane Hermine and Hurricane Matthew551

which occurred only one month apart. For Hurricane Hermine, 22 flood reports, more than552

half of the total of 40 flood reports made as a result of Hurricane Hermine, came from one553

area in downtown Norfolk. In contrast, for Hurricane Matthew, which produced more than554

three times as much total cumulative rainfall on average than Hurricane Hermine (264 mm555

compared to 84 mm) and was at least comparable in terms of tide, water table height, and556

wind conditions, only six flood reports were made from the same area. It is unlikely that the557

actual flooding caused by Hurricane Matthew, a much larger storm, was in fact a quarter in558

severity, but more likely that there were significant differences in reporting between the two559

events.560

4.4 Increase in Street Flood Reports565

Flooding reports and events have become more frequent over the period of record566

(September 2010 to October 2016). The number of flooded street reports has increased year567

to year in the past four years and overall in the past seven years (see Figure 12). More than568

twice as many floods were reported in 2016 compared to 2014. Very few flood reports were569

made in 2013 compared to the other years of record. This can be explained, at least in part,570

because 2013 was an exceptionally mild hurricane season, the first since 1994 without any571

major hurricanes. The only storm event in 2013 reported to have caused flooding was an un-572

named heavy rain event.573
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Figure 9. Number of total reports made and events reported per reporter561

Table 5. VDOT roadway class codes and descriptions562

VDOT Road Class Code Description

1 Interstate
2 Tunnel Roads and other VDOT owned
3 Principal Arterials
4 Minor Arterials
5 Collectors
6 Local Streets- Public
7 Local Streets- Private
8 Miscellaneous
9 Base Roads
10 Public Alleys

The overall increase in the number of flood reports over the period of record was due574

primarily to an increase in the number of storm events from which flood reports were made575

rather than an increase in the number of reports per storm event. In the years 2010-2013, five576

total storm events were reported to have caused flooding, while in 2014 alone, 16 events were577

reported to have caused flooding and at least 10 storm events per year resulted in reports of578

flooded streets in 2015 and 2016 (see Figure 12). In contrast to the storm events reported in579

2010-2013, most of the storm events reported to have caused flooding in the years 2014-2016580

were smaller, unnamed storm events. In each of the years 2010, 2011, and 2012, there was581

a storm event for which more than 100 flood reports were made, each of them named, major582

hurricanes (Nicole, Irene, and Sandy, respectively). In 2014, on the other hand, of the 16583
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Figure 10. Percentage of total roadway length and percentage of reported floods per VDOT roadway class

in Norfolk, VA

563

564

storm events reported to have caused flooding, the maximum number of flood reports for an584

individual storm event was 39, and only one named hurricane was reported to have caused585

flooding, Hurricane Arthur.586

The increase in flood reports due to smaller storms from 2014-2016 may suggest that587

the City of Norfolk is becoming more susceptible to flooding from less extreme storm events588

(i.e. storm events which are not hurricanes). It is noted that most of the flood reports were589

made by staff of the City which operates with limited resources. In reality, the number of590

flood locations resulting from the recorded storm events could be larger than what was re-591

ported, including street floods that may have occurred from less extreme events in 2010-592

2013. It is possible that the increase in flood reports over the period of record may simply be593

due to an increase in attention given to street flooding and resources to street flood reporting594

in Norfolk, rather than an increase in actual flooding. An increase in attention and resources595

allocated to street flooding and street flood reporting from the City of Norfolk however, may596

still suggest that flooding problems are worsening.597

Sweet and Park [2014] noted an increase of nuisance level tidal flooding in Norfolk,598

VA from 1.2 days per year in the years 1956-1960 to 7.4 days per year in the years 2006-599

2010. Sweet and Park [2014] also predicted that the amount of flooding will increase with600

time due to predicted sea level rise. This is in agreement with the increase of flood reports601

seen in the present study. As sea level rises and climate changes, it may be necessary to in-602
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corporate a mechanism to account for this change into the data-driven models. This change603

be referred to as concept drift [Gama et al., 2014; Gama and Castillo, 2006] and mecha-604

nisms for accounting for it would be especially useful when using Random Forest, which as605

noted above, cannot exceed the range of training data.606

Figure 11. Flood events and in Norfolk, VA Sep. 2010 - Oct. 2016607

5 Conclusions608

Two data-driven models, Poisson regression and Random Forest were trained to predict609

flood severity for a given set of environmental conditions (rainfall, tide levels, groundwater610

levels, and wind conditions) using quality-controlled, crowd-sourced street flooding reports611

as a proxy output variable. The data used for training and evaluating the models was from612

Norfolk, Virginia USA. The Random Forest model performed better overall compared to613

Poisson regression in the evaluation phase (root mean squared error of 3.87 compared to 6.71614

flood reports, mean absolute error of 0.69 compared to 0.96 flood reports) with less variance615

(standard deviation of 6.00 compared to 18.42 flood reports). The most important variable616

in predicting model output in the Random Forest model was by far total cumulative rainfall617

followed by low tide and lower low tide.618

The quality-controlled crowd-sourced record provided by the City of Norfolk, despite619

limited coverage spatially and from storm to storm, provided an uncommonly detailed flood620

record. In the record, flooding at individual intersections and streets was recorded for many621
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events over an extended period of time. Using this as training data, the models demonstrated622

in this paper could give city workers a reasonable estimate of flooding severity based on fore-623

casted environmental conditions. This is a first step in the long-term goal of spatially and624

temporally detailed urban flood predictions to assist city managers in real-time flood adap-625

tation measures such as traffic management. This also demonstrates one way that crowd-626

sourced data, despite its limitations, can provide useful information to flood prediction mod-627

els.628

A main limiting factor in building accurate models is the quantity and quality of the629

record of flooding used to train the model. Given the bias present in the training dataset,630

predictions were necessarily lumped spatially (predictions were made at the city scale) and631

temporally (predictions were made at a event time scale). While other work has raised the632

need for accurate and dense measurements of rainfall [Sadler et al., 2017; Hill et al., 2014],633

the primary input to flood models, the results of this work highlight the need for more accu-634

rate and complete record of flooding data including depth and duration of flood occurrences.635

Such data is needed to adequately train flood models with enough spatial and temporal detail636

to help make street-level, real-time operational decisions.637

Given more complete and objective flood occurrence data, it is likely that a data-driven638

model such as the ones demonstrated in this paper, could predict street flooding with much639

greater precision. The need for a more complete flood record data may be filled with a street-640

level sensor network, eliminating human subjectivity. Such a network is currently being pi-641

loted to record water levels at commonly flooded intersections in Norfolk. The detailed data642

from this network could be used to further improve predictions from models such as those643

demonstrated in this paper. Crowd-sourced data such as flood reports made from cellular de-644

vices could also be useful. Although the subjectivity in publicly crowd-sourced data would645

likely be similar to the dataset used in the paper, a wider number of reporters would presum-646

ably mitigate the subjectivity to some degree.647

Data Availability648
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